翻訳と辞書
Words near each other
・ Solidago leavenworthii
・ Solidago leiocarpa
・ Solidago lepida
・ Solidago ludoviciana
・ Solidago macrophylla
・ Solidago macvaughii
・ Solidago microglossa
・ Solidago missouriensis
・ Solid Ground (Peter Baldrachi album)
・ Solid Ground (Rob Crosby album)
・ Solid Ground (Seattle)
・ Solid Ground (Smokie album)
・ Solid Ground (The Black Seeds album)
・ Solid Ground Curing
・ Solid ground floor
Solid harmonics
・ Solid HarmoniE
・ Solid HarmoniE (album)
・ Solid hydrogen
・ Solid image
・ Solid immersion lens
・ Solid ink
・ Solid Ivory
・ Solid Klein bottle
・ Solid line reporting
・ Solid lipid nanoparticle
・ Solid mechanics
・ Solid modeling
・ Solid Modeling Solutions
・ Solid Muldoon


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Solid harmonics : ウィキペディア英語版
Solid harmonics
In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates. There are two kinds: the ''regular solid harmonics'' R^m_\ell(\mathbf), which vanish at the origin and the ''irregular solid harmonics'' I^m_(\mathbf), which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:
:
R^m_(\mathbf) \equiv \sqrt}\; r^\ell Y^m_(\theta,\varphi)

:
I^m_(\mathbf) \equiv \sqrt} \; \frac{r^{\ell+1}}

== Derivation, relation to spherical harmonics ==
Introducing ''r'', θ, and φ for the spherical polar coordinates of the 3-vector r, we can write the Laplace equation in the following form
: \nabla^2\Phi(\mathbf) = \left(\frac \fracr - \frac\right)\Phi(\mathbf) = 0 , \qquad \mathbf \ne \mathbf,

where ''l''2 is the square of the nondimensional angular momentum operator,
: \mathbf = -i\, (\mathbf \times \mathbf) .

It is known that spherical harmonics Yml are eigenfunctions of ''l''2:
:
\hat l^2 Y^m_\equiv \left(
^2 +\hat l^2_y+\hat l^2_z\right )Y^m_ = \ell(\ell+1) Y^m_.

Substitution of Φ(r) = ''F''(''r'') Yml into the Laplace equation gives, after dividing out the spherical harmonic function, the following radial equation and its general solution,
:
\frac\fracr F(r) = \frac F(r)
\Longrightarrow F(r) = A r^\ell + B r^.

The particular solutions of the total Laplace equation are regular solid harmonics:
:
R^m_(\mathbf) \equiv \sqrt}\; r^\ell Y^m_(\theta,\varphi),

and irregular solid harmonics:
:
I^m_(\mathbf) \equiv \sqrt} \; \frac{r^{\ell+1}} .


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Solid harmonics」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.